Библиографический список

- 1. Марчук Г.И. Математическое моделирование в проблеме окружающей среды. М.: Наука, 1982. 319 с.
- 2. Пененко В.В., Алоян А.Е. Модели и методы для задач охраны окружающей среды. Новосибирск: Наука, 1985. –254 с.
- 3. Мадияров М.Н. Геоинформационная система для моделирования процесса загрязнения воздушного бассейна промышленного города // Вестник инженерной академии Республики Казахстан. Алматы, 2007. №3(25). С. 18–23.

УДК 519.8

Анализ динамики экологической ситуации в районах Алтайского края на основе моделей линейной регрессии

А.С. Маничева

АлтГУ, г. Барнаул

Исследование экологической ситуации в районах Алтайского края в динамике позволит, во-первых, оценить эффективность мер природоохранной политики края, во-вторых, определить факторы, ухудшающие экологию в большей степени по сравнению с прочими факторами; в-третьих, определить районы с неблагоприятной экологической ситуацией и требующие по этой причине большего внимания. Изучению этих вопросов посвящено много публикаций, например, [1, 2]. Данная работа продолжает серию исследований, начатых в [3, 4].

Рассмотрим в качестве факторов окружающей среды, характеризующих экологическую ситуацию как результат влияния антропогенного воздействия, следующие показатели по 56 районам Алтайского края за 2014—2017 гг.:

- 1. Количество объектов, имеющих стационарные источники загрязнения атмосферного воздуха, единиц (Π 1).
- 2. Выброшено в атмосферу загрязняющих веществ, отходящих от стационарных источников, всего (тыс. тонн) (Π 2).
- 3. Выброшено в атмосферу загрязняющих веществ, отходящих от стационарных источников, твердые вещества (тыс. тонн) (П3).
- 4. Выброшено в атмосферу загрязняющих веществ, отходящих от стационарных источников, газообразные и жидкие вещества (тыс. тонн) (Π 4).
- 5. Общее количество загрязняющих веществ, отходящих от всех стационарных источников (тыс. тонн) (П5).

6. Уловлено и обезврежено загрязняющих веществ в процентах от общего количества загрязняющих веществ, отходящих от стационарных источников (%) (Π 6).

Анализ влияния факторов окружающей среды и оценка экологической ситуации в районах в виде их упорядочения по степени неблагоприятной экологии проводились на основе моделей линейной регрессии.

Показатели П1–П6 выступали в качестве независимых переменных, упорядочение районов по степени неблагоприятной экологической ситуации методом простого ранжирования — в качестве зависимой переменной.

Анализ построенных моделей за каждый год периода 2014-2017 гг. показал, что факторы П4 и П5 не оказывают существенного влияния на результат моделирования и могут быть исключены из рассмотрения. Повторное построение моделей линейной регрессии по меньшему числу факторов (П1, П2, П3, П6) показало значимость оставшихся факторов (p-значение для П1, П2, П3, П6 < 0,05) и удовлетворительную адекватность моделей (все коэффициенты детерминации в пределах 0,85–0,9). Параметры построенных моделей представлены в таблине 1.

Таблица 1 — Параметры моделей линейной регрессии по районам Алтайского края за 2014-2017 гг.

Перемен- ные модели	Год, по которому построена модель								
	2014		2015		2016		2017		
	Коэф-	<i>p</i> -зна-	Коэф-	<i>p</i> -зна-	Коэф-	<i>p</i> -зна-	Коэф-	<i>p</i> -зна-	
	фициент	чение	фициент	чение	фициент	чение	фициент	чение	
П1	1,1202	0,00	1,4109	0,00	1,6270	0,00	1,7521	0,75	
П2	0,0116	0,00	0,0108	0,00	0,0080	0,00	0,0071	0,00	
П3	-0,0130	0,00	-0,0101	0,00	-0,0118	0,00	-0,0105	0,00	
П6	0,2165	0,00	0,1844	0,00	0,2708	0,00	0,2785	0,00	
Свобод- ный член	4,2115	0,02	3,8150	0,06	-0,0188	0,99	-0,6808	0,75	

Наибольший вклад в результат моделирования за все рассматриваемые года внес фактор $\Pi 1$ — количество объектов, имеющих стационарные источники загрязнения атмосферного воздуха. За период 2014—2017 гг. количество источников загрязнения возросло с 514 до 575 ед., что также подтверждает негативное влияние данного фактора на экологическую ситуацию в районах.

Результаты моделирования – упорядочение районов по степени неблагоприятной экологической ситуации – были распределены по трем группам: в 1-ую группу попали районы с благоприятной экологической ситуацией, во 2-ую – со средней ситуацией, в 3-ю – с неблагоприятной. Количество регионов со стабильной ситуацией, то есть не покидавших свою группу по сравнению с предыдущим годом, а также за весь рассматриваемый период, отображено в таблице 2.

Таблица 2 – Количество регионов, имеющих устойчивое положение

в группе

Грушпо	Временной период							
Группа	2014-2015	2015-2016	2016-2017	2014-2017				
1	23	20	20	17				
2	6	8	12	2				
3	16	14	16	12				

В среднем в 1-ой группе с благоприятной экологической ситуацией каждый год оставалось 38% от общего числа районов, в 3-ей группе (с неблагоприятной ситуацией) – 27%. За весь период 2014–2017 гг. 30% районов оставались в 1-ой группе, 4% – во 2-ой, 21% – в 3-ей; районы с нестабильной ситуацией составили 45% от общего числа.

В целом по результатам моделирования можно сказать, что половина районов Алтайского края имеют нестабильную экологическую ситуацию, при этом районов с благоприятной ситуацией больше, чем с неблагоприятной.

Библиографический список

- 1. Малкова Н.Н. Экологические факторы риска, связанного с окружающей средой, на территории Алтайского края // Вестник Алтайского государственного аграрного университета. Барнаул, 2012. № 5(91). С. 52—56.
- 2. Вологдин Е.В. Охрана окружающей среды в Алтайском крае в период 2000–2015 гг. Статистический аспект // Экономическая наука сегодня: теория и практика : материалы V Междунар. науч.-практ. конф. (Чебоксары, 3 дек. 2016 г.). Чебоксары: ЦНС «Интерактив плюс», 2016. С. 278–284.
- 3. Черевать Д.В., Маничева А.С., Элементы экологической карты Алтайского края // МАК : «Математики Алтайскому краю» : сборник трудов всероссийской конференции по математике (Барнаул, 29 июня 1 июля 2016 г.). Барнаул: Изд-во Алт. ун-та, 2016. С. 234–235.
- 4. Черевать Д.В., Маничева А.С. Анализ динамики экологической ситуации в районах Алтайского края // Ломоносовские чтения на Алтае: фундаментальные проблемы науки и образования: сборник научных статей международной конференции (Барнаул, 14–17 ноября 2017 г.). Барнаул, 2017. С. 637–638.