

Рисунок 1 – Динамика плотности фитопланктона

В варианте без учета пространственной неоднородности среды и перемещений зоопланктона образуется стационарное пространственное распределение фитопланктона с пиками биомассы на глубинах 30 м и 80 м. При учете влияния света максимум биомассы на глубине 30 метров сохраняется, после чего наблюдается сокращение биомассы, и после 80 метров фитопланктона уже практически нет. Добавление суточных миграций зоопланктона концентрирует весь фитопланктон до глубины 60 метров, однако глубина максимальной плотности не меняется.

Библиографический список

1. Petzold, T. et al. Effects of zooplankton diel vertical migration on a phytoplankton community: a scenario analysis of the underlying mechanisms // Ecological Modelling. – 2009. – Vol.220, I.9-10. – P.1358–1368.

2. Cheriton O.M., McManus M.A., Stacey M.T. and Steinbuck J.V. Physical and biological controls on the maintenance and dissipation of a thin phytoplankton layer // Marine Ecology Progress Series. -2009. -Vol. 378. - P. 55–69.

УДК 662.997

Имитационное моделирование систем солнечного теплоснабжения в реальных климатических условиях

О.А. Ефремова

АлтГУ, г. Барнаул

Солнечная радиация – практически неисчерпаемый и экологически чистый источник энергии. На Землю поступает огромное количество солнечной энергии и до 1,5% всей этой энергии может быть использовано без ущерба для экологической среды. Статья посвящена одной из важнейших тем в области энергетики на нетрадиционных и возобновляемых источниках энергии – оценке основных параметров систем солнечного теплоснабжения с помощью математического и компьютерного моделирования. Солнечное теплоснабжение (т.е. использование солнечной энергии для горячего водоснабжения и отопления в жилищно-коммунальной и производственной сферах) получило в мировой практике большое распространение. Существующие методы расчета систем солнечного теплоснабжения позволяют на основе использования климатической информации, с учетом характеристик применяемого оборудования оценить полезную теплопроизводительность установки за любой период времени. Результатом такой оценки является информация о динамическом поведении и долговременных характеристиках системы.

Для многих задач проектирования солнечных установок и оценки их производительности необходимо вычислить энергию излучения, падающего на наклонную поверхность солнечного коллектора, на основе данных о солнечном излучении, поступающем на горизонтальную поверхность. Вычислить отношение потоков прямого солнечного излучения, падающего на наклонную и горизонтальную поверхности можно с помощью выражения:

$$R_b = \frac{\cos\theta}{\cos\theta_z},\tag{1}$$

где θ – угол падения прямого солнечного излучения (угол между направлением падающего излучения и нормалью к поверхности), θ_z – зенитный угол (угол между вертикалью и направлением на Солнце, т.е. угол падения прямого солнечного излучения на горизонтальную поверхность).

Излучение, падающее на поверхность, установленную под углом β к горизонту, вычисляется по формуле:

$$I_T = I_b R_b + I_d \left(\frac{1 + \cos\beta}{2}\right) + I \rho_g \left(\frac{1 - \cos\beta}{2}\right), \tag{2}$$

где I_b поток прямого излучения, I_d поток рассеянного и $I\rho_g$ поток отраженного от земной поверхности излучения, ρ_g – коэффициент диффузного отражения.

Плотность потока солнечной радиации, поглощаемой пластиной коллектора в некоторый момент времени, равна произведению плотности потока падающей радиации I_T , пропускательной способности системы прозрачных покрытий коллектора τ и поглощательной способности пластины коллектора α . Обе последние величины зависят от материала и угла падения солнечного излучения. При анализе солнечного коллектора часто используется понятие приведенной поглощательной способности ($\tau \alpha$), которую следует рассматривать как свойство системы «покрытие – поглощающая панель», а не как произведение значений двух свойств. Существует несколько подходов к определению характеристик коллектора. На одном краю крайне детальные модели, включающие в себя все конструктивные особенности коллектора (толщину панели, расстояние между трубами, количество и материал покрытий, толщину тыльной и боковой теплоизоляции и т.д.) На другом краю располагаются модели, содержащие лишь два параметра: один, показывающий как коллектор поглощает излучение, и второй – как он теряет тепло. Такая модель описывается уравнением (3) – полезная энергия, отводимая от коллектора, является разностью между количеством солнечной энергии, поглощенной пластиной коллектора, и количеством энергии, теряемой в окружающую среду:

$$Q_{u} = F_{R} A \Big[I_{T} \big(\tau \alpha \big) - U_{L} \big(T_{i} - T_{a} \big) \Big], \tag{3}$$

где A – площадь коллектора, M^2 ; F_R – коэффициент, связанный с эффективностью переноса тепла от пластины коллектора к жидкости, отводящей тепло; U_L – полный коэффициент тепловых потерь коллектора, BT/(M^2 ·°C); T_i – температура жидкости на входе в коллектор, °C; T_a – температура окружающей среды, °C.

При известных параметрах коллектора, объеме и коэффициенте тепловых потерь бака, величине нагрузки и заданных климатических данных температура в баке-аккумуляторе может быть вычислена с помощью уравнения:

$$mC_{p}\frac{dT_{s}}{dt} = Q_{u} - L_{s} - (UA)_{s}(T_{s} - T_{a}), \qquad (4)$$

где Q_u и L_S – потоки энергии, поступающей от коллектора и отводимой к потребителю, T_s и T_a – температура воды в баке и температура окружающей среды, m – масса воды в баке, C_p – удельная теплоемкость воды.

Уравнениями (3) и (4) описываются два ключевых компонента системы солнечного теплоснабжения: солнечный коллектор и аккумулятор тепла. Модели отдельных компонент могут быть объединены в комплексную модель системы, структурная схема которой представлена на рисунке 1 [1–3].

Рисунок 1 - Структурная схема модели солнечного теплоснабжения

На рисунках 2 и 3 приведены графики, построенные по результатам расчетов данной модели. При расчетах температура окружающего воздуха в течения дня изменялась от 7 С° до 15 С°, бак находился в помещении при температуре окружающего воздуха 25 С°, плотность потока солнечного излучения вычислялась в условиях ясного неба.

Рисунок 2 – Зависимость полезной выработки коллектора от поглощенного излучения

Рисунок 3 – Изменение температуры воды в баке-аккумуляторе в течение дня

Библиографический список

1. Ефремова О.А. Методы и модели расчета систем солнечного теплоснабжения в реальных климатических условиях // Прикладная математика и информатика: современные исследования в области естественных и технических наук: материалы III научно-практич. всеросс. конф. молодых ученых. Тольятти, 2017. – С. 177–181.

2. Ефремова, О.А. Моделирование тепловых процессов с использованием солнечной энергии в климатических условиях Алтайского края // Сб. тр. всеросс. конф. по математике «МАК-2017». – Барнаул: Издво АлтГУ, 2017. – С. 296–299.

3. Ефремова О.А., Хворова Л.А. Математическое моделирование систем солнечного теплоснабжения // Известия АлтГУ. – 2017. – №4 (96). – С. 98–103

УДК 51-76.57.036

Моделирование зависимости ширины годичных колец деревьев от климатических условий

В.В. Журавлева, Т.В. Барсукова АлтГУ, г. Барнаул

Исследования годичных колец и их зависимости от климатических и экологических условий активно проводятся российской научной школой Е.А. Ваганова [1], сформировавшейся в Институте леса им. В.Н. Сукачева, а также и другими научными коллективами, в том чис-