

Рисунок 5 – Псевдосфера и её инверсия m > a

Библиографический список

- 1. Поздняк Э.Г., Шикин Е.В. Дифференциальная геометрия. Первое знакомство. М.: Изд-во МГУ, 1990. 384 с.
- 2. Розенфельд Б.А. Многомерные пространства. М. : Изд-во Наука, 1966.-647 с.

УДК 514.75

К геометрии бутылки Клейна на сфере S^3 в E^4

М.А. Чешкова

АлтГУ, г. Барнаул

Рассмотрим тор Клиффорда в E^4

$$\rho(u,v) = (\cos(u),\sin(u),\cos(v),\sin(v))$$

и обмотку тора

$$\rho(u) = \left(\cos(\frac{u}{2}), \sin(\frac{u}{2}), \cos(u), \sin(u)\right).$$

Так

как

$$\rho(u) = \rho(u + 4\pi) \,,$$

TO

вектор-функция

$$s(u) = \frac{1}{2}(\rho(u) + \rho_1(u))$$
, где $\rho_1(u) = \rho(u + 2\pi)$

есть 2π -периодическая не равная нулю, а вектор-функция

$$l(u) = \frac{1}{2}(\rho(u) - \rho_1(u))$$
 есть 2π -антипериодическая.

Имеем

$$s(u) = (0, 0, \cos(u), \sin(u)), l(u) = (\cos(\frac{u}{2}), \sin(\frac{u}{2}), 0, 0)$$
.

Определим поверхность KL уравнением

$$r(u,v) = \cos(v)s(u) + \sin(v)l(u),$$

$$u \in [-\pi,\pi], v \in [-\pi,\pi]..$$
(1)

Теорема 1. Поверхность KL топологически эквивалентна бутылке Клейна.

Доказательство. Рассмотрим бутылку Клейна как фактор-пространство [Фоменко 7, с.75]

$$[-\pi,\pi]X[-\pi,\pi]/[(-\pi,-v)\approx(\pi,v),(u,-\pi)\approx(u,\pi)]$$
. Так как $s(u+2\pi)=s(u),l(u+2\pi)=-l(u)$, то $r(-\pi,-v)=r(\pi,v),r(u,-\pi)=r(u,\pi)$, и поверхность

KL определяет модель бутылки Клейна.

Теорема 2. Если кривая $\rho = \rho(u)$ есть обмотка тора Клиффорда, то поверхность KL есть минимальная поверхность на сфере.

Доказательство.

Из (1) следует

$$r_{u} = \cos(v)s'(u) + \sin(v)l'(u),$$

$$r_{v} = -\sin(v)s(u) + \cos(v)l(u),$$

$$g_{22} = (r_{v}, r_{v}) = 1, g_{12} = 0, g_{11} = \cos(v)^{2} + \frac{1}{4}\sin(v)^{2},$$

$$g = \det(g_{ij}) = g_{11}.$$

Поместим начало координат центр сферы S^3 . Обозначим через n_1, n_2 – орты нормалей к поверхности $KL \subset S^3 \subset R^4$.

Имеем

$$\begin{split} n_1 &= r(u,v) = \cos(v)s(u) + \sin(v)l(u), \\ n_2 &= \frac{1}{\sqrt{4g}} \left(4\cos(v)l'(u) - \sin(v)s'(u). \right. \\ \nabla_i^{\perp} n_{\alpha} &= 0, \alpha = 1, 2. \end{split}$$

Определим операторы [2, с. 22] A_1, A_2 :

$$(r_i, A_{\alpha j}^{\ k} r_k) = (r_{ij}, n_{\alpha}), \alpha = 1, 2.$$

Имеем

$$A_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A_{2} = \begin{pmatrix} 0 & \frac{1}{2g\sqrt{g}} \\ \frac{1}{2g\sqrt{g}} & 0 \end{pmatrix}.$$

Вектор

$$\eta = \frac{1}{2} (tr(A_1)n_2 + tr(A_2)n_2)$$

есть вектор средней нормали поверхности *KL* в E^4 [2, с. 40], а вектор $\eta^* = \frac{1}{2} tr(A_2) n_2$ есть вектор средней нормали поверхности *KL* в S^3 (3,

с.11). Так как $tr(A_2) = 0$, то поверхность $K\!L$ в S^3 минимальная.

Минимальная в S^3 поверхность $K\!L$ относится к классу поверхностей Лаусона [4]:

 $\Psi(x, y) = (\cos(\alpha x)\cos(y), \sin(\alpha x)\cos(y), \cos(x)\sin(y), \sin(x)\sin(y)), \alpha > 0.$

Библиографический список

- 1. Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н. Введение в топологию. М., 1995.
- 2. Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии. Т. 2. – М. : Наука, 1981.
- 3. Chen B. Geometry of submanifolds and its applications // Sci.Univ. Tokyo, 1981.
- 4. Lawson H.B.Jr. Complete minimal surfaces in S^3 // Ann. Math. 1970. V. 2. P. 335–374.