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Some problems in the theory of homogeneous spaces

E.D.Rodionov
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Since a homogeneous space (M,p) is geodesically complete, there arises the problem on the behavior
of geodesic curves on such spaces, their closure, and on their self-intersection. The following theorem is
known in this direction.

Theorem 1 (see [1, 2]). Geodesics on homogeneous spaces are merely closed curves or unclosed curves
without self-intersections.

Moreover, the following theorem is proved in the work [2] of M.V.Mechsheryakov.

Theorem 2. Geodesic curves of a lefi-invariant metric on a connected and simply connected nilpotent Lie
group are not closed.

The following two problems arise in a natural way:

Problem 1 (4. Besse). Find homogeneous Riemannian manifolds all of whose geodesics are closed.

Problem 2. Describe homogeneous Riemannian manifolds all of whose geodesics are unclosed.

For the first time, the Besse problem was considered in the class of normal homogeneous spaces, i.¢.,
those spaces (G/H, p) whose homogeneous Riemannian metric p is obtained from the Ad(G)-invariant inner
product of a Lie group G under the projection 7 : G — G/H. The following theorem was proved in [3].
Theorem 3 (see [3]). Let (G/H, p) be a simply connected, normal homogeneous Riemannian spaceall of
whose geodesics are closed. Then (G/H, p) is isometric to a compact symmetric space of rank 1 (CSROS: §",
CP*, HP", and CaP’).

Later on, by using purely topological methods, the following theorem was proved in [3] for arbitrary
homogeneous Riemannian manifolds.

Theorem 4 (see [3]). A simply connected homogeneous Riemannian manifold all of whose geodesicsare
closed and have the same length is isometric to a CSROS.

Simultaneously, a geometric proof of this theorem having no requirement on the lengths of geodesics
was given [4, 5].

Theorem 5 (see [4, 5]). A simply connected Riemannian manifold all of whose geodesics are closed is iso-
metric to a CSROS.

The main idea of the proof of Theorem 5 is as follows. If the structure of (G/H, p) is complicated, then
we seek a flat totally geodesic torus 7' in M = G/H whose irrational winding is unclosed. Then a finite list of
manifolds remains, which is examined step-by-step.

The following conjecture is closely related to the Besse conjecture.

Conjecture 1 (W.Klinkenberg, see [6]). On a simply connected closed manifold, there exist infinitely many
geometrically distinct closed geodesics.

Although there is still no final answer to the W Klinkenberg conjecture in the general case, the follow-

ing theorem holds for homogeneous Riemannian spaces.
Theorem 6 (see [7]). Let M be a compact, simply connected, homogeneous space not diffeomorphic to a
CSROS. Then any Riemannian metric on M admits infinitely many geometrically distinct closed geodesics. If
on M, there exists a Riemannian metric p such that all geodesics emanating from a certain point p return to
this point before a certain common period t, then M is diffeomorphic to a CSROS.

After the appearance of these works, there naturally arose the problem on the closures of geodesic
curves on homogeneous Riemannian spaces. In the case of naturally reductive spaces, it was studied in [8].
Theorem 7 (see [8]). Let G and H be compact and connected Lie groups, G/H be naturally reductive,y(t) is
a geodesic of G/H. Then the closure of y(1) either is simply a closed curve or is isometric to a flat torus of
dimension not less than 2.
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The following two examples show that both extreme cases are realized in the theorem in a certain

sense.

Example 1. On the normal homogeneous spaces

SUm + 1)/ SUm) =~ S, Spin + 1)/ Spin) = S

Spin(9)/ Spin(7) =S¥, Spin + 1)/ Spin)-S' =~ CP*"*,

Sp(2)/ SU(2); SU(S)/ Sp(2) -S1, (SU3) - U2)/S 1.1 )/ Ue2),

the closures of geodesic curves either are simply closed curves or flat, but not totally geodesic tori, and,
moreover, the latter always exist.

Example 2. If G/H is a compact symmetric space, then any of its geodesics either is simply a closed curve or
an irrational winding of a certain flat totally geodesic torus of the manifold G/H.

The following problem naturally arises.

Problem 3. What is the structure of the closure of geodesic curves of an arbitrary homogeneous Riemannian
manifold G/H ?

Geodesically Orbital Spaces

Definition 1. A geodesic y of a Riemannian manifold (M,p) is said to be homogeneous 1f it is an orbit of a
one-parameter subgroup g(t) of Isom(M,p).

The following theorem is known.

Theorem 8 (see [9]). Every homogeneous Riemannian manifold has at least one homogeneous geodesic
passing through any point given in advance.

As is conventional, a geodesic 7 is said to be maximal if it is not the restriction of any other geodesic.
Definition 2. A homogeneous manifold (G/H, p) is called a geodesically orbital space if all of its maximal
geodesics are homogeneous.

Remark 6.1. Naturally reductive and, in particular, normal homogeneous spaces are geodesically orbital
spaces.

There naturally arises the problem on the existence of a geodesically orbital space different from a na-
turally reductive space. The first such example was constructed by A. Kaplan [10]. This example is the six-
dimensional nilpotent Lie group with two-dimensional center (one of the generalized Heisenberg groups)
equipped with a certain left-invariant metric.

The class of weakly symmetric spaces is closely related to the class of geodesically orbital spaces.
Definition 3. A Riemannian manifold M is said to be a weakly symmetric space if for every pair of points p,
q of M, there exists an isometry of M interchanging the points p and q.

It is clear that any symmetric space is weakly symmetric and naturally reductive. Also, geodesic
spheres in symmetric spaces of rank 1 are weakly symmetric. Note that there exist weakly symmetric spaces
which are not even naturally reductive. For example, geodesic spheres in the Cayley projective plane CaP’
are such spaces. J.Berndt, O.Kowalski, and L.Vanhecke obtained the following result in [11].

Theorem 9 (see [11]). Every weakly symmetric space M is geodesically orbital.

Many examples of weakly symmetric spaces were constructed by W.Ziller in [12]. The geodesically
orbital spaces of dimension <6 were classified by O.Kowalski and L.Vanhecke in [13]. It turns out that all
geodesically orbital spaces of dimension <5 are naturally reductive. At the same time, in the case of dimen-
sion equal to 6, there exist three- and two-parameter families of geodesically orbital spaces that are not natu-
rally reductive. Among these families, there is the compact symmetric homogeneous space SO(5)/U(2) hav-
ing a two-parameter family of invariant metrics.

The structure of geodesically orbital spaces was also studied by Gordon in [14], where the case of nil-
potent Lie groups with left-invariant Riemannian metric was studied in detail.

Among recent works, we can mention the work D.Alekseevsky and A.Arvanitoyeorgos [15] devoted

to metrics with homogeneous geodesics on flag manifolds. In particular, the following theorem was proved
in [15].
Theorem 10. Let M = G/H be a Riemannian flag manifold of a classical Lie group G. Assume that M is a
geodesically orbital space with respect to a G-invariant Riemannian metric different from the standard me-
tric. Then M is SO(21 + 1)/ U(l — m) - SO(2m + 1) for certain | > 2 and m > 0.

At the same time, the following problem remains unsolved.

Problem 4. Classify all geodesically orbital spaces.

In concluding we mention the works about other problems in the theory of homogencous spaces
[16-25].

This work was supported by RFBR (grants: Ne 16-01-00336A, Ne 16-31-00048mol_a), the Russian
Federation Ministry of Education (Project Code: 1148).
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JABOHCTBEHHOCTD AJ1s1 KOH(POPMHO-IJIOCKUX METPHK
HEOTPHLATEJIbHOH KPUBH3HbI

E.JI. Poouonoe', B.B. Crasckuii’y, M. B. Kypxund’
' AnmI'Y, 2. Bapnayn; “FOI'Y, 2. Xanmwi-Mancuiick

B Tcopuu BEINYKITBIX MOAMHOKCCTB BCKTOPHOT'O MPOCTPAHCTBA BAKHYIO POIB UTPACT ABOWCTBCHHOCTh
Munkosckoro [1]. st koHHOPMHO-TIIIOCKUX METPHUK MOMKHO OIMPEASIUTD AHAJIOT 3TOrQ MOHSITHSL.



