УДК 502.7+558.085

А.Ю. Набиева Е.Н. Кайгородова A.Y. Nabieva E.N. Kaigorodova

ВВЕДЕНИЕ В КУЛЬТУРУ IN VITRO РЕДКИХ ВИДОВ РОДА IRIS – I. TIGRIDIA BUNGE, I. HUMILIS GEORGI, I. GLAUCESCENS BUNGE

TISSUE CULTURE INTRODUCTION OF RARE SPECIES OF GENUS IRIS L. – I. TIGRIDIA BUNGE, I. HUMILIS GEORGI, I. GLAUCESCENS BUNGE

Представлены материалы по введению в культуру *in vitro* трех редких видов р. *Iris*, используя скарифицированные семена и изолированные зародыши, выделенные на стадии относительной автономности. Показаны преимущества эмбриокультуры по сравнению с семенным размножением.

Род ирис (Iris L.) широко распространен в северном полушарии, в его состав входит около 200 видов. На территории России произрастает 40 дикорастущих видов этого рода, а в Сибири – 22 вида и 2 подвида (Конспект ..., 2005). Изученные в данной работе 3 вида ирисов являются редкими видами, сокращающими свою численность в результате антропогенной деятельности. Iris glaucescens Bunge (Касатик сизоватый) произрастает в Западной Сибири, Казахстане, Монголии и Китае. В России проходит северная граница ареала. Вид включен в список «Редкие и исчезающие растения Сибири» (1980), в «Красную книгу Новосибирской области» (2008) и в «Красную книгу Алтайского края» (2006) со статусом 2. Iris humilis Georgi (К. низкий) широко распространен в России и за ее пределами, относится к азиатской ареалогической группе. В России встречается в Восточной и Западной Сибири. Исчезающий вид, численность популяций и ареал сокращаются из-за распашки земель степных и лесостепных районов (Редкие ..., 1980). Iris tigridia Bunge (К. тигровый) – субэндемичный центральноазиатский вид. В России растет в Республиках Алтай и Тыва. Редкий вид флоры Сибири, нуждается в государственной охране, включен во все кадастры государственного и общесибирского уровня (Красная книга РФ, 2008; Редкие ..., 1980,). Целью данной работы явилось изучение морфогенетической способности зародышей и скарифицированных незрелых семян редких сибирских видов I. humilis, I. glaucescens, I. tigridia в культуре in vitro, а также описание морфологических признаков семян и зародышей данных видов.

Материал и методы. В качестве материала были взяты незрелые семена и зародыши трех видов подрода Iris из природных ценопопуляций (Республика Алтай, Новосибирская область). Морфологические признаки семян I. humilis, I. glaucescens, I. tigridia (в 20-кратной повторности каждой популяции) изучали под световой бинокулярной лупой МБС-1 при 2-кратном увеличении. Определяли длину и ширину семени, эндосперма и зародыша, соотношение их показателей. Семена всех трех видов ирисов имели эндосперм в стадии восковой спелости. На день сбора, основываясь на данных массового цветения изучаемых видов в этих же ценопопуляциях, возраст семян составлял 36-48 дней после раскрытия цветка. Семенные коробочки перед работой промывали в течение 0,5 часа в проточной воде. Стерилизацию проводили по схеме: 1) обработка 70%-м этиловым спиртом – 1 мин; 2) промывание в стерильной дистиллированной воде –5 мин; 3) обработка 4%-м раствором лизоформина – 15 мин; 4) промывание коробочек в стерильной дистиллированной воде три раза по 5 мин. Использовали питательную среду, приготовленную по прописи Мурасиге и Скуга (MS) (Murashige, Skoog, 1962), содержащую 0,6 % агара; pH среды до автоклавирования доводили до 5,6. Незрелые зародыши извлекали из семян и культивировали на питательных средах МS. Варианты питательной среды MS: 1) MS + 0,3 мг/л BAP*; 2) MS; 3) MS + 1 Kin*; 4) MS+ 1 BAP+1 NAA; 5) 1/2 MS; 6) MS + 0,3 мг/л BAP + 0,1 мг/л NAA*. Семена и зародыши проращивали при температуре $22\pm24^{\circ}$ С под люминесцентными лампами с фотопериодом 16/8 часов.

Результаты и их обсуждение. Сравнительный анализ морфологических признаков незрелых семян показал, что семена *I. glaucescens* на 29% крупнее, чем *I. tigridia* и на 83% крупнее, чем семена *I. humilis*. Эндосперм у этих видов занимает от 60 до 88% длины семени, а зародыш – более половины длины эндосперма, что указывает на достаточное его развитие. Зародыш молочного цвета, торпедовидный; в среднем, у *I. humilis* длиной 1,5 мм, у *I. tigridia* – 2,45 мм, *I. glaucescens* – 2,7 мм. Длина зародыша в 4–5

^{*} BAP – 6-бензиламинопурин; Kin – кинетин; NAA – α-нафтилуксусная кислота.

Таблица 1

Прорастание эксплантов ирисов Subgenus *Iris* в течение первого месяца культивирования в зависимости от содержания регуляторов роста в питательной среде MS

Вид	Тип экспланта	Проросших эксплантов %, варианты питательной среды 1- 6						
		1	2	3	4	5	6	Всего %:
I. tigridia	надрезанное семя	40,0	28,8	35,7	0,0	50,0	12,5	29,3
	зародыш	75,0	66,0	50,0	25,0	50,0	33,3	59,8
I. humilis	надрезанное семя	30,8	40,0	33,3	57,0	5,5	27,3	32,1
	зародыш	28,6	57,1	17,0	55,5	25,0	57,1	40,0
I. glaucescens	надрезанное семя	36,4	41,4	16,2	0	25,0	12,5	21,9
	зародыш	35,3	50,0	28,8	7,5	45,0	25,0	31,9

раз больше его ширины. Соотношение длины зародыша к длине семени составило у *I. humilis* -0.52; у *I. tigridia* -0.39; у *I. glaucescens* -0.24. У зародышей всех видов ирисов заметна дифференциация осевых органов, отчетливо видна граница между семядолей и зародышевым корешком (рис. 1).

Извлеченные из семян зародыши, лишенные плотной к этому времени семенной кожуры и ингибирующего влияния эндосперма, имеют высокую регенерационную активность в культуре *in vitro*. Для зародышей на ранних этапах эмбриогенеза данная способность к росту и развитию наиболее сильно проявляется под влиянием гормональных экзогенных факторов. Для видов Subgenus *Iris* способность изолированных зародышей к прорастанию, выделенных из семян на 36–48 ДПО, была видоспецифичной (табл. 1).

Для *I. tigridia* наибольшее количество проросших зародышей было отмечено на питательной среде №1 с добавлением 0.3 мг/л BAP - 75%, тогда как для *I. humilis* и *I. glaucescens* максимум прорастания зародышей был зафиксирован на среде №2 (MS без регуляторов роста): 57.1 и 50% соответственно. Данный факт позволяет сделать заключение об относительной автономности зародышей ирисов, выделенных на стадии восковой спелости эндосперма (Батыгина, Васильева, 2002).

Известно, что прорастание зрелых семян ирисов в значительной степени ингибируется ороговением эндосперма и плотной семенной оболочкой (Маркова, Конькова, 2010). Нами обнаружено, что у незрелых семян в стадии восковой спелости эндосперма данные факторы также препятствуют их быстрому прорастанию, поэтому в опыте использовали семена, скарифицированные в апикальной части. Выявлено, что в процентном отношении проросших зародышей данных видов ирисов в среднем больше, чем проросших семян. В процессе дальнейшего культивирования полученных проростков было отмечено, что органогенез растений, полученных из зародышей всех исследуемых видов, включал в себя несколько основных стадий, причем с 5–7 дня культивирования отмечали появление первого настоящего листа, а к 30–40 дню культивирования растения находились в ювенильной стадии развития, имели 2-3 листа и развитый первичный корень. Полученные растения-регенеранты уже к концу третьего месяца культивирования находились в имматурной стадии, характеризующейся активным образованием вегетативных органов, наличием хорошо развитой корневой системы, образованием адвентивных побегов (рис. 2). Растения, полученные из скарифицированных семян, характеризовались более низкими темпами органогенеза, вступали в имматурную стадию, начиная с пятого месяца культивирования *in vitro*.

Выволы:

- 1. При использовании эмбриокультуры для введения в культуру *in vitro* редких сибирских видов ирисов *I. humilis, I. glaucescens, I. tigridia*; получено больше растений, чем из надрезанных семян.
- 2. Зародыши данных видов ирисов, изолированные из незрелых семян, собранных на 36–48 день после раскрытия цветка, приобретают свойство относительной автономности.

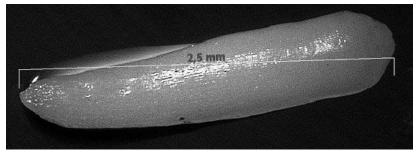


Рис. 1. Зародыш *I. tigridia*, извлеченный на восковой стадии зрелости эндосперма.

Рис. 2. а) имматурное растение *I. glaucescens* (15 недель культивирования *in vitro*), получено из изолированного зародыша; б) растение-регенерант *I. glaucescens*, выделенное из кластера побегов для пересадки *ex vitro*.

3. Темпы органогенеза у растений ирисов, полученных из зародышей, выше, чем у выращенных из семян.

ЛИТЕРАТУРА

Батыгина Т.Б., Васильева В.Е. Размножение растений. — СПб.: Изд-во С.-Петерб. ун-та, 2002. - 232 с. Конспект флоры Сибири: Сосудистые растения / Сост. Л.И. Малышев, Г.А. Пешкова, К.С. Байков и др. — Новосибирск, 2005. - 362 с.

Красная книга Алтайского края. Растения. – Барнаул, 2009. – 262 с.

Красная книга Новосибирской области: Животные, растения и грибы. – Новосибирск: Арта, 2008. – 528 с. Красная книга РСФСР (растения). – М., 1988. – 590 с.

Маркова Е.М., Конькова Л.И. Развитие особей двух видов рода *Iris* L. в культуре *in vitro* // Вест. Удмуртск. ун-та, 2010. – Вып. 4. – С. 69–73.

Редкие и исчезающие растения Сибири. – Новосибирск, 1980. – 224 с.

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture // Physiol. plant, 1962. – Vol. 15, № 3. – P. 473–497.

SUMMARY

The article represents materials on tissue culture introduction of three rare species of genus *Iris* from scarified seeds and isolated embryos. The advantages of embryo culture were shown in comparison with seed germination.