- 7. Поляков В.Л. О механической суффозии грунтов под действием цилиндрического стока переменной интенсивности // Прикладная гидромеханика. Киев, 2006. Т. 8, №4. С. 43–52.
- 8. Кузнецов А.Ю., Пославский С.А. Исследование математической модели механической суффозии // Вестник Харьковского национального университета. Серия «Математика, прикладная математика и механика». Харьков, 2009. №875. С. 57–68.
- 9. Frederic Golay, Stephane Bonelli. Numerical modeling of suffusion as an interfacial erosion process. European Journal of Environmental and Civil Engineering, 2010.
- 10. Хусаинова З.Р. Теоретическое исследование процессов термоэрозии и термокарста многолетнемерзлотных пород: дис. ... к-та физ.-мат. наук. Уфа, 2007.
- 11. Протодьяконова Н.А. Математическое моделирование деформаций грунта при оттаивании с учетом фильтрационной консолидации: дис. ... к-та физ.-мат. наук. Якутск, 2008.
- 12. Суриков В.В. Механика разрушения мерзлых грунтов. Ленинград, 1979. –128 с.

УДК 513.83

О единственности разбиения линии на конгруэнтные части

И.В. Поликанова АлтГПА, г. Барнаул

Определим линию γ в метрическом пространстве E как вложение φ числового отрезка $[a,b] \subset R$ в E. Образ при этом вложении числового отрезка [c,d] такого, что $[c,d] \subset [a,b]$, называется дугой с концами $C = \varphi(c)$ и $D = \varphi(d)$ и обозначается \overline{CD} . Точки $A_0 = \varphi(a)$ и $B = \varphi(b)$ — концы линии λ , а $\varphi(t)$ при $t \in (a,b)$ — внутренние точки. Ввиду того, что отображение $\varphi:[a,b] \to \gamma$ является гомеоморфизмом, всякий набор чисел $\{\mathbf{t_1}, \mathbf{t_2}, ..., \mathbf{t_{n-1}}\}$ таких, что $a < \mathbf{t_1} < \mathbf{t_2} < ... < \mathbf{t_{n-1}} < b$, задаёт n-l внутренних точек $A_1, A_2, ..., A_{n-1}$ на γ и однозначно определяет n дуг $\overline{\alpha_1} = \overline{A_{1-1}} A_1$, i = 1, 2, ..., n ($A_n = B$), получающих естественный порядок на γ и обладающих тем свойством, что $\overline{\alpha_i}$ \bigcap

 $\vec{a}_{i+1} = A_i, \ \vec{a}_i \cap \vec{a}_j = \emptyset$ при |i-j| > 1. В этом случае мы будем говорить о разбиении линии γ точками $A_1, A_2,..., A_{n-1}$ на части или дуги и записывать $\gamma = \vec{a}_1 \cup \vec{a}_2 \cup ... \cup \vec{a}_n$.

Под движением метрического пространства E с метрикой ρ будем понимать изометрическое отображение пространства E на себя. Будем говорить, что линия γ разбивается точками A_1 , A_2 ,..., A_{n-1} на n конгруэнтных частей (дуг), если её разбиение $\gamma = \overline{a_1} \cup \overline{a_2} \cup ... \cup \overline{a_n}$ этими точками на части обладает свойством: для каждого $i \in \{1,2,...,n\}$ найдётся такое движение f_i пространства, что $\overline{a_i} = f_i$ ($\overline{a_1}$).

Замечания: 1. Поскольку движение является гомеоморфизмом, то образом линии при движении является линия, концами которой служат образы концов данной линии.

2. Так как композиция движений является движением, то, в случае разбиения линии на конгруэнтные части: $\gamma = \overline{a_1} \cup \overline{a_2} \cup ... \cup \overline{a_n}$, для любых $i,j \in \{1,2,...,n\}$ существует движение f_{ij} такое, что $\overline{a_i} = f_{ij}$ $(\overline{a_j})$.

Теорема 1. Каковы бы ни были в метрическом пространстве множество Y и его собственное компактное подмножество X не существует движения, отображающего X на Y.

Доказательство. Допустим противное: для множества У в метрическом пространстве (Е, р) и его собственного компактного подмножества X существует движение f такое, что Y = f(X). Выберем произвольно точку $y \in Y \setminus X$. В силу компактности X нижняя грань расстояний $r = \inf_{x \in \mathbb{R}} f(y,x)$ положительна. Множество Y – компактно, будучи образом компактного множества Х при непрерывном отображении, каким является движение f. Поэтому из всякого его покрытия открытыми шарами с радиусами r/2 можно выбрать конечное подпокрытие. Пусть n — минимальное число шаров с радиусами r/2, достаточное для покрытия множества Y, и $\Omega = \{B_1, B_2, ..., B_m\}$ – одно из таких покрытий: $Y \subseteq \bigcup_{i=1}^{n} B_{i}$. Так как $X \subseteq Y$, то данное семейство шаров будет являться покрытием и для Х. Существует шар В; этого покрытия, содержащий точку у и, значит, целиком содержащийся в открытом шаре с центром у радиуса r. Ввиду определения числа r шар B_i не имеет общих точек с множеством Х. Поэтому, удалив его (и другие, не пересекающиеся с X шары) из семейства Ω , мы получим покрытие множества X шарами (при соответствующей перенумерации) $\{B_1, B_2,..., B_m\}$: $X \subseteq \bigcup_{i=1}^m B_i$, где m < n. Тогда $Y = f(X) \subseteq \bigcup_{i=1}^m f(B_i)$. При движении открытые шары отображаются в открытые шары того же радиуса. Поэтому последнее соотношение означает, что множество Y покрывается семейством открытых шаров $\{f(B_1), f(B_2),..., f(B_m)\}$ с радиусами r/2, причём в количестве меньшем, чем n. Полученное противоречие доказывает ложность допущения. Теорема доказана.

Следствие 1. Каковы бы ни были в метрическом пространстве множество Y и его собственное компактное подмножество X не существует движения f такого, что $Y \subseteq f(X)$.

Основной результат статьи:

Теорема 2. Если линия в метрическом пространстве допускает разбиение на п конгруэнтных частей, то такое разбиение единственно.

Доказательство. Проводится индукцией по числу n конгруэнтных частей, на которые разбивается линия.

- А). n=2. Пусть линия γ имеет 2 различных разбиения на 2 конгруэнтные части: $\gamma=\overline{a_1}\cup\overline{a_2}=\overline{b_1}\cup\overline{b_2}$. Пусть s,t- параметры делящих точек 1-ого и 2-ого разбиений соответственно. Для определённости будем считать, что s< t. Тогда a< s< t< b и, значит, $[a,s] \subset [a,t]$, $[t,b] \subset [s,b]$. Поэтому $\overline{a_1} \subset \overline{b_1}$ и $\overline{b_2} \subset \overline{a_2}$. Пусть f,g- движения такие, что $\overline{a_2}=f$ $(\overline{a_1})$ и $\overline{b_2}=g$ $(\overline{b_1})$. Тогда g $(\overline{b_1}) \subset f(\overline{a_1})$. Следовательно $g^{-1}(g$ $(\overline{b_1})) \subset g^{-1}(f(\overline{a_1}))$. Так как f,g- биекции, то $g^{-1}(g$ $(\overline{b_1}))=(g^{-1}\circ g)(\overline{b_1})=\overline{b_1}, g^{-1}(f(\overline{a_1}))=(g^{-1}\circ f)(\overline{a_1})$. Итак, $\overline{b_1} \subset (g^{-1}\circ f)(\overline{a_1})$. Получили, что дуга $\overline{b_1}$ содержится в образе своего собственного компактного подмножества $\overline{a_1}$ при движении $g^{-1}\circ f$, что противоречит теореме 2. Сделанное допущение ложно. Разбиение линии на 2 конгруэнтные части единственно.
- В). Пусть утверждение справедливо для разбиений линии на k конгруэнтных дуг при всех k < n. Докажем единственность разбиения на n конгруэнтных дуг. Допустим противное: существует 2 разбиения линии $\gamma = \overline{AB}$ на n конгруэнтных частей: $\gamma = \overline{a_1} \cup \overline{a_2} \cup ... \cup \overline{a_n} = \overline{b_1} \cup \overline{b_2} \cup ... \cup \overline{b_n}$. Пусть $\mathbf{t_1} < \mathbf{t_2} < ... < \mathbf{t_{n-1}}$ и $\mathbf{s_1} < \mathbf{s_2} < ... < \mathbf{s_{n-1}}$ параметры, соответствующие делящим точкам $\mathbf{K_1}, \mathbf{K_2}, ..., \mathbf{K_{n-1}}$ 1-ого и $\mathbf{L_1}, \mathbf{L_2}, ..., \mathbf{L_{n-1}}$ 2-ого разбиений при гомеоморфизме φ : $[\mathbf{a}, \mathbf{b}] \rightarrow \gamma$. Заме-

тим, что $t_1 \neq s_1$ иначе в силу замечания 2 дуга K_1B линии у допускала бы 2 различных разбиения на n-1 конгруэнтных дуг, что противоречило бы индукционному предположению. Пусть для определённости $t_1 < s_1$. Тогда [a, t_1] \subseteq [a, s_1]. Поэтому $\overline{a_1} \subseteq \overline{b_1}$. Тогда по крайней мере 1 из n-l интервалов (s_1 , s_2), (s_2 , s_3), (s_{n-1} ,b) не содержит ни одно из n-2 значений $t_2, t_3, ..., t_{n-1}$, а значение t_1 и подавно ввиду линейного порядка на множестве [a,b]. Пусть это будет интервал (s_{i-1}, s_i) , где i > 1. Пусть j – наибольший из номеров таких, что $t_{i-1} \le$ s_{i-1} , где $j \ge 2$. Поскольку $t_i \notin (s_{i-1}, s_i)$, то $[s_{i-1}, s_i] \subseteq [t_{i-1}, t_i]$. Следовательно, $b_i \subset \overline{a_i}$. Учитывая, что $b_i = g(\overline{b_1})$, а $\overline{a_i} = f(\overline{a_1})$ при некоторых движениях f и g, запишем $g(\overline{b_1}) \subseteq f(\overline{a_1})$ и, повторяя рассуждения аналогичные приведённым в пункте A), получим: $\overline{b_1} \subset$ $(g^{-1} \circ f)(\overline{a_1})$. Таким образом, дуга b_1 содержится в образе своего собственного компактного подмножества $\overline{a_1}$ при движении $g^{-1} \circ f$, что противоречит теореме 1. Сделанное допущение ложно. Разбиение линии на n конгруэнтных дуг единственно. Теорема доказана.

Замечание 3. Теорема 2 не верна для замкнутых линий. Например, эллипс допускает бесконечное множество разбиений на 2 конгруэнтные части.

УДК 532.5

Моделирование двухслойных течений с учетом испарения с границы раздела

Е.В. Резанова

АлтГУ, г. Барнаул

В работе проводится моделирование стационарных конвективных течений жидкости и газа с учетом испарения жидкости на границе раздела. Двухслойная система состоит из жидкости и газа (точнее, смеси газа и пара), заполняющих горизонтальные слои с твердыми, непроницаемыми верхней и нижней границами (рис. 1). Данная система «жидкость — газ» находится под действием продольных градиентов температуры.