количество яиц». Результат применения теста Грэнджера: количество куриц является причиной для количества яиц.

Следует отметить, что одним из условий применения теста Грэнджера является стационарность исследуемых временных рядов, что также проверяется различными тестами.

Библиографический список

1. Granger C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral / Methods, Econometrica. – 1969. – Vol.37. – P. 424–432.

УДК 519.2

Алгоритм вероятностной модели для расчета остаточного ресурса электродвигателя

Е.О. Мартко

АлтГТУ им. И.И. Ползунова, г. Барнаул

Математический аппарат методов, необходимых для создания вероятностной математической модели технического состояния электродвигателя (ЭД), проанализированы и приведены в работах [1-3]. Помимо этого, рассмотрены методы оценки параметров функций распределения случайных величин: температуры, влажности, теплопроводности, режимов работы ЭД, долговечности, тока ЭД. При моделировании временных рядов использован метод анализа сингулярного спектра.

Поскольку описанные характеристики изменяются во времени и носят случайный характер, представляя собой временные ряды случайных чисел, основной задачей являлся выбор метода их прогнозирования с минимальной потерей достоверности полученных данных.

Аппроксимативные методы в свою очередь позволили найти подходящие аналитические выражения с неизвестными параметрами, которые полностью удовлетворяют поставленным задачам и описывают найденные экспериментальные результаты. Для таких характеристик как температура окружающей среды и влажность воздуха — в различных районах Алтайского получены статистические модели распределения.

На сопротивление изоляции ЭД оказывают влияние нагрузка и режим его работы. В связи с тем, что они зависят от времени, т.е. имеют явный характер временного ряда, наилучшим методом для прогнозирования является метод анализа сингулярного спектра [3].

Суть алгоритма созданной математической модели заключается в следующем: используя исходные данные (тип ЭД, характер работы ЭД, наименование технологического процесса, температура (Θ), влажность (φ), концентрация агрессивного агента (C), тип среды, сопротивление изоляции (R_{20}), норма вероятности, постоянная времени нагрева (T_n)) производится отслеживание и прогноз остаточного ресурса ЭД.

Норма вероятности — это априорно заданная вероятность выхода ЭД из строя, которая может быть изменена в зависимости от степени ответственности ЭД в технологическом процессе. В качестве нормы вероятности рассматривалась вероятность выхода ЭД из строя, заданная априорно, которая может быть изменена в зависимости от степени занятости ЭД в технологическом процессе.

В основу модели положены сопротивления, полученные в зависимости от показаний агрессивности среды (влажности, температуры), а также с учетом изменения параметров от времени и аналитических зависимостей. Общая функциональная зависимость (1):

$$R\left(T_{ca}, m, n, \varphi, C, R_{o}\right) = f\left(T_{ca}\left(t, \varphi\right)\right), \tag{1}$$

была получена следующим образом:

- срок службы ЭД выражается как $T_{cx} = f(t, \varphi)$;
- в свою очередь, влажность определяется как $\varphi = f(C_0, \phi)$;
- сопротивление изоляции $R_0 = f(\alpha, \theta_{\Re cnn})$

ГДе
$$\theta_{\mathfrak{s}\kappa cn\pi}^{0} = f\left(\theta_{o.c.}^{0}, \tau_{y}\right);$$

- температура окружающей среды является средней годовой температурой $\theta_{\circ,\circ,\circ}^{=0} = \Theta^{=0}$, зависимость которой такова: $\Theta^{=0} = f\left(\overline{\Theta}^{=0},\psi\right)^{\frac{1}{2}}$
- функции $\psi(t)$ и $\phi(t)$ экспериментальные данные, а параметры m,n,C являются постоянными справочными данными.

Таким образом, можно записать общую функциональную зависимость:

$$R\left[f\left(t,f\left(C_{0},\phi\right)\right),m,n,f\left(C_{0},\phi\right),C,f\left(\alpha,f\left(f\left(\overline{\Theta}^{0},\psi\right),\tau_{y}\right)\right)\right]=f\left(T_{cs}\left(t,\varphi\right)\right)$$

Вследствие ряда необходимых подстановок и на основании вышеописанной цепочки зависимостей получена математическая модели, которая имеет вид (2) [3]:

$$R = R_{20} \left[1 + \alpha \left\langle A_0 + \sum_{i=1}^n \left(A_i \cos \omega_i t + B_i \sin \omega_i t \right) + \psi \left(t \right) + \tau_y \right\rangle \right] \cdot \exp \left\langle -t \cdot \left[A \cdot \exp \left\langle E_a \cdot C^{-m} \cdot \left(C_0 + \sum_{j=1}^n \left(C_j \cos \omega_j t + D_j \sin \omega_j t \right) + \phi(t) \right)^{-n} \cdot \right\rangle \right]^{-1} \right\rangle \cdot \left[R_z \cdot \left[A_0 + \sum_{i=1}^n \left(A_i \cos \omega_i t + B_i \sin \omega_i t \right) + \psi \left(t \right) \right] \right)^{-1} \right\rangle \right] \right\rangle , (2)$$

где R_{20} — начальное сопротивление изоляции ЭД, замеренное непосредственно перед вводом в эксплуатацию ЭД при температуре 20° C:

 α – температурный коэффициент сопротивления изоляции, $1/\mathcal{C}$; A_0 – коэффициент, численно равный математическому ожиданию средней годовой температуры, °C:

 A_i , B_i – амплитуды колебаний математического ожидания температуры, соответствующие частоте ω_i ;

 $\psi(t)$ — случайная составляющая температуры, соответствующая времени t. $^{\circ}C$:

 τ_{v} – установившееся превышение температуры;

C – концентрация агрессивного агента, г/м³ или %;

A, m, n — постоянные коэффициенты, зависящие от природы материала и режима работы двигателя;

 E_a — эффективная энергия активации процесса, вызывающего отказ, определяемая для конкретного материала, Дж/моль;

 $R_e = 8,31 \text{ Дж/град·моль} - универсальная газовая постоянная;$

 C_{θ} – коэффициент, численно равный математическому ожиданию средней годовой влажности, %;

 C_{j} , D_{j} – амплитуды колебаний математического ожидания влажности, соответствующие частоте ω_{j} ,

 $\phi(t)$ — случайная составляющая влажности, соответствующая времени t – ${}^{\circ}\!C$.

Таким образом, полученная математическая модель (2) позволяет определить остаточный ресурс ЭД.

Библиографический список

1. Мартко Е.О. Вероятностная оценка факторов, влияющих на работу электродвигателей в сельском хозяйстве // Ломоносовские чтения на Алтае : сборник научных статей международной школы-семинара в 4 ч. – Ч. ІІ. – Барнаул : АлтГПА, 2012. – С. 192-197.

- 2. Мартко Е.О., Куликова Л.В. Методы оценки параметров функций распределения случайных величин, влияющих на работу электродвигателя в сельском хозяйстве. Электронный периодический научный журнал «SCI-ARTICLE.RU», 2013. №3. С. 123-126.
- 3. Мартко Е.О. Прогнозирование времени работы электродвигателя до отправки на ремонт // Современные проблемы электроэнергетики. Алтай 2014 [Электронный ресурс] : сборник статей ІІ Международной научно-технической конференции / Алт. гос. техн. ун-т им. И.И. Ползунова. Электрон. дан. и прогр. Барнаул : ЦЭОР АлтГТУ, 2014. С.172-179.

УДК 51-74

Моделирование опасности возникновения ДТП на трассе A322 в Калманском районе

Е.В. Печатнова АлтГУ, г. Барнаул

Автомобилизация страны, решая задачи по перевозке пассажиров и грузов, ставит проблему обеспечения безопасности дорожного движения. В обстановке, характеризующейся высокой интенсивностью движения автомобильного транспорта, в которое вовлечены десятки миллионов людей и большое число транспортных средств, предупреждение аварийности становится одной их серьезнейших социально-экономических проблем. От ее успешного решения в значительной степени зависят не только жизнь и здоровье людей, но и развитие экономики страны [1]. Согласно статистическим данным ГИБДД, одними из наиболее тяжелых являются аварии на автомобильных дорогах вне населенных пунктов.

Одним из способов предупреждения аварий является их прогнозирование. Прогнозирование дорожно-транспортных происшествий (ДТП) требует детального понимания особенностей возникновения аварий, формализованной оценки влияния факторов на состояние безопасности. Повышение качества прогнозирования позволит предотвращать аварии путем уменьшения влияния факторов с помощью технических и организационно-строительных решений, а также путем верного распределения сил и средств дорожных организаций, служб ГИБДД и СМП, и методом информирования населения.

Основными методами прогнозирования в настоящее время являются: статистический метод; метод многофакторного корреляционного